Multi-criteria genetic algorithm applied to scheduling in multi-cluster environments Open
نویسندگان
چکیده
Scheduling and resource allocation to optimize performance criteria in multi-cluster heterogeneous environments is known as an NP-hard problem, not only for the resource heterogeneity, but also for the possibility of applying co-allocation to take advantage of idle resources across clusters. A common practice is to use basic heuristics to attempt to optimize some performance criteria by treating the jobs in the waiting queue individually. More recent works proposed new optimization strategies based on Linear Programming techniques dealing with the scheduling of multiple jobs simultaneously. However, the time cost of these techniques makes them impractical for large-scale environments. Population-based meta-heuristics have proved their effectiveness for finding the optimal schedules in large-scale distributed environments with high resource diversification and large numbers of jobs in the batches. The algorithm proposed in the present work packages the jobs in the batch to obtain better optimization opportunities. It includes a multi-objective function to optimize not only the Makespan of the batches but also the Flowtime, thus ensuring a certain level of QoS from the users’ point of view. The algorithm also incorporates heterogeneity and bandwidth awareness issues, and is useful for scheduling jobs in large-scale heterogeneous environments. The proposed meta-heuristic was evaluated with a real workload trace. The results show the effectiveness of the proposed method, providing solutions that improve the performance with respect to other well-known techniques in the literature. Journal of Simulation (2015) 9(4), 287–295. doi:10.1057/jos.2014.41; published online 30 January 2015
منابع مشابه
Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the mo...
متن کاملA Mathematical Model of a Multi-Criteria Parallel Machine Scheduling Problem: a Genetic Algorithm (RESEARCH NOTE)
.
متن کاملMinimizing the total tardiness and makespan in an open shop scheduling problem with sequence-dependent setup times
We consider an open shop scheduling problem with setup and processing times separately such that not only the setup times are dependent on the machines, but also they are dependent on the sequence of jobs that should be processed on a machine. A novel bi-objective mathematical programming is designed in order to minimize the total tardiness and the makespan. Among several mult...
متن کاملA multi-objective genetic algorithm (MOGA) for hybrid flow shop scheduling problem with assembly operation
Scheduling for a two-stage production system is one of the most common problems in production management. In this production system, a number of products are produced and each product is assembled from a set of parts. The parts are produced in the first stage that is a fabrication stage and then they are assembled in the second stage that usually is an assembly stage. In this article, the first...
متن کاملA New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Simulation
دوره 9 شماره
صفحات -
تاریخ انتشار 2015